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Distribution of Energies for the Two-Dimensional
Ising Model
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We calculate the number of polygons with fixed total length drawn on a square
lattice with periodic boundary conditions. In addition, we study the statistics of
polygons with the number of horizontal and vertical links fixed separately. The
analysis is performed via a mapping to the Ising model with isotropic and
anisotropic interactions. We deal with the case of finite lattice sizes as well as
the thermodynamic limit.
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1. INTRODUCTION

The exact solution of the 2d Ising model has been found more than half a
century ago, and recently some new interesting aspects of this solution have
been raised. In particular, the calculation of the distribution of energies for
finite lattices attracted considerable attention.(1) This function is very
important. Among many possible applications, it can serve as a reference
point in testing the correctness of Monte Carlo methods.

In ref. 1 it has been shown how to calculate the distribution of energies
for the isotropic model (i.e., the model with same coupling constants for the
two perpendicular directions) using the exact solution given by Kaufman(3)

for finite M_N lattices. This distribution is given by the set of coefficients
for the partition function:

ZM, N=e2MN;J :
MN

k=0

gkx2k (1)
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where N is the number of columns, M the number of rows of the lattice,
J is the coupling constant, kB is Boltzmann's constant, ;=kBJ, x=e&2;J

is the low-temperature expansion variable, and the coefficient gk is the
number of configurations with energy 4kJ above (one of the two) ground
states. (It turns out that gk is also the number of closed polygons of total
length 2k on the lattice).

The coefficients gk have been calculated by Beale using the exact solu-
tion given by Kaufman. The result is exact, but is effectively calculable only
for relatively small sizes of the lattice due to the computational complexity
of the problem. This complexity grows exponentially with N. In ref. 1 the
result for lattice size 32_32 has been given. Our own computations for the
40_40 lattice (by a method different from Beale's method, see below) took
about 1 day on a standard workstation. In contrast to these systems, the
lattice sizes of MC simulations can be of the order of a thousand, see for
instance(5) where simulations of square lattices up to size 1000_1000 have
been performed. For lattices of this size the possibility to obtain an exact
distribution of energies seems to be hopeless. Still it is very desirable to
have some reference point also for large lattices.

It turns out that it is relatively simple to calculate some asymptotic
quantity, namely (log gk)�MN which is finite for all M, N, and takes a
finite thermodynamic limit.

The interpretation of this quantity is obvious: gk is the number of
states with energy 4kJ over the two (degenerate) ground states. So the
quantity (log gk)�MN is simply an entropy per spin in the microcanonical
ensemble. In other words, it is the entropy expressed as a function of the
internal energy. Besides the simplicity of this result, we like to mention that
this relation was not pointed out in the literature. This is the reason why
we explore this quantity a little further.

An expression for the quantity (log gk)�MN can also be obtained from
the product form of the partition function (see formulas (10)�(14) below
for the anisotropic case), using for example the steepest descent path
method for calculating the coefficients of the polynomial. In this way one
obtains the same expression as for the entropy in the microcanonical
ensemble. However, an immediate interpretation of (log gk)�MN as the
entropy in the microcanonical ensemble is conceptually simpler and more
esthetic.

The outline of the paper is as follows. In Section 2, we derive the
formula for the entropy in the isotropic case expressed as a function of
the internal energy. Some properties of this function are also discussed. In
Section 3 the anisotropic case is considered (i.e., coupling constants are
different in vertical and horizontal directions). An expression for the num-
ber of states with given energies in the horizontal and vertical directions is
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derived and illustrated for some lattice sizes. In Section 4 we calculate
analogous quantities in the TD limit. In Section 5 we summarize our
results and discuss prospects for future work.

2. ISOTROPIC CASE: THERMODYNAMIC LIMIT

All quantities necessary for expressing the entropy as a function of
internal energy have been calculated in Onsager's seminal paper.(2) In the
isotropic case (in the rest of this part we consider a square lattice M=N )
we have for the internal energy

u=&J
1+x2

2x \1+
2
?

k$K(k)+ (2)

where x=tanh ;J is the ``high-temperature'' variable, k=2 sinh 2;J�
cosh2 2;J=4x(1&x2)�(1+x2)2 and k$=\- 1&k2=2 tanh2 2;J&1 are
elliptic moduli, and K(k) is an elliptic integral of the second kind. The rela-
tion between internal energy u and (scaled) length of polygons }=k�N 2 is
obvious:

}=
1

2J
u+1 (3)

The formula for entropy s does not appear in Onsager's paper, but it
can be calculated in straightforward manner from f =u&Ts:

s=&
1
2

log \1+x
1&x+

1+x2

2x \1+
2
?

k$K(k)++log
2(1+x2)

1&x2 +
1

2?
F(k) (4)

where

F(k)=|
?

0
log[ 1

2 (1+- 1&k2 sin2 ,)] d,

It is easy to check that both functions s and u are monotonic functions
of the argument x for x # (0, 1), so that s(u) is well defined by the expres-
sions (2) and (4) above.

A plot of s(}) is presented in Fig. 1. We denote s(})#s(u(})), where
u and } are related by (3). We do not present plots for finite N, because
these are practically indistinguishable for N=40 and N=�. For instance,
for the largest coefficient g800 , the quotient ln g800 �1600 is equal to 0.6904,
whereas the corresponding value of entropy is ln 2=0.6932. In general, the
values for N=40 and the limiting values deviate by less than 10.
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Fig. 1. Entropy s as a function of (scaled) polygon length } for isotropic Ising model in
thermodynamic limit.

An interesting property of the s(}) function is its convexity. The s(})
function is convex (i.e., its second derivative is negative) almost
everywhere. An exception is the critical value of } (}cr=1&1�- 2). The
second derivative of s(}) is zero at this point, but the third derivative
diverges (logarithmically). This corresponds to a phase transition at this
value of }.

3. ANISOTROPIC CASE: FINITE LATTICES

The main achievement of Beale's paper for the isotropic case can be
extended to the more general situation of an anisotropic model having
coupling constants different in the two directions (say, J in horizontal
direction and J$ in vertical direction). Using results of ref. 3 one can obtain
expressions for the distribution of energies for the anisotropic model. In
order to do so, let us start with the ``polygonal'' form of the partition
function given by van der Waerden,(6) see also:(7)

ZM, N=eMN;(J+J$) :
MN

k=0

:
MN

l=0

gkl ukvl (5)

where u=exp(&2;J ), v=exp(&2;J$). The coefficient gkl is the number of
configurations with energy 2kJ+2lJ$ above the two (degenerate) ground
states. (It turns out that gkl is also the number of closed polygons with k
horizontal bonds and l vertical bonds on the lattice). It is clear that the
coefficients gkl determine the distribution of energies.

To obtain the coefficients gkl , we must rewrite formula (39) of ref. 3
giving the partition function for finite M, N. It is possible to do it in
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such a manner that the polynomial structure of the resulting expression will
be transparent. It can be done by a method borrowed from ref. 4.

According to formula (39) in ref. 3 the partition function is

Z=
1
2

(2 sinh 2H )MN�2 } { `
N

r=1
\2 cosh

M#2r

2 ++ `
N

r=1
\2 sinh

M#2r

2 +
+ `

N

r=1
\2 cosh

M#2r&1

2 ++ `
N

r=1
\2 sinh

M#2r&1

2 += (6)

where #j is determined by

cosh #j=cosh 2H* cosh 2H$&sinh 2H* sinh 2H$ cos(?j�N ) (7)

where H=;J, H$=;J$ and H* is determined from e&2H=tanh H*.
Using an elementary identity:(4)

cosh l%=2l&1 `
l&1

s=0 \cosh %&cos
(2s+1) ?

2l + (8)

and a twin identity

sinh l%=2l&1 sinh % `
l&1

k=1
\cosh %&cos

k?
l + (9)

we obtain the following expression for the partition function:

ZM_N=(cosh ;J cosh ;J$)MN (I+II+III+IV ) (10)

where:

I= `
N

r=1

`
M�2&1

s=0 _(1+x2)(1+ y2)&2y(1&x2) cos
2?r
N

&2x(1& y2) cos
(2s+1) ?

M & (11)

III= `
N

r=1

`
M�2&1

s=0
_(1+x2)(1+ y2)&2y(1&x2) cos

(2r&1) ?
N

&2x(1& y2) cos
(2s+1) ?

M & (12)
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IV= `
N�2

r=1 _\1+x2)(1+ y2)&2y(1&x2) cos
(2r&1) ?

N +
2

&(2x(1& y2))2&
_ `

N

r=1

`
M�2&1

s=1
_(1+x2)(1+ y2)&2y(1&x2) cos

(2r&1) ?
N

&2x(1& y2) cos
2s?
M & (13)

II=(1+x+ y&xy)(1&x+ y+xy)(1+x& y+xy)(1&x& y&xy)

_ `
N�2&1

r=1
_ \(1+x2)(1+ y2)&2y(1&x2) cos

2r?
N +

2

&(2x(1& y2))2&
_ `

N

r=1

`
M�2&1

s=1
_(1+x2)(1+ y2)

&2y(1&x2) cos
2r?
N

&2x(1& y2) cos
2s?
M & (14)

and x=tanh ;J, y=tanh ;J$.
In expression (10) above, the partition function is expressed as a

polynomial in the ``high-temperature'' variables x=tanh ;J, y=tanh ;J$,
whereas in (5) we need an expression in the ``low-temperature'' variables
u=exp(&2;J ), v=exp(&2;J$). However, from duality and cyclic bound-
ary conditions, it follows that the coefficients gkl in both expressions (5) and
(10) must be identical.

Let us denote the sum of expressions (11)�(14) by P(x, y):

P(x, y)#I+II+III+IV= :
MN

k=0

:
MN

l=0

gkl xkyl (15)

The interpretation of this expression is that the coefficient gkl is the number
of polygons with k horizontal and l vertical bonds.

The correctness of the expression for P(x, y) has been checked in
several ways. First of all, for the isotropic case (i.e., x= y), the known
expression is reproduced. In other words, we have checked that an equality
�k

l=0 gk&l, l= gk holds. The second test consists of an examination of
certain properties of the polynomial. It turns out that the only nonzero
coefficients are the even-even ones, and all these coefficients are positive.
Indeed, our polynomial satisfies these conditions. Specializing from this
moment to M=N, the Pkl polynomial turns out to be symmetric with
respect to the change of indices k � N 2&k, as it should be. The third test
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Fig. 2. Anisotropic lattice 6_6. Logarithm of number of states as a function of (scaled)
polygon lengths: horizontal k and vertical l.

was a direct calculation of some coefficients gkl for small k and l (for example,
g0, 2N= g2N, 0=N(N&1)�2; g2, 2= g2, 4= g4, 2=N 2; g4, 4=N 2(N 2+5)�2)
and a check that they are the same as appearing in the P(x, y) polynomial,
for all N considered, up to N=10.

The plots of log gkl as functions of k and l are presented on Figs. 2 and
3 for N=6 and N=10.

4. FORMULA FOR ln gkl �MN IN THE TD LIMIT

Let us begin with an interpretation of the (scaled) lengths of polygons
in horizontal and vertical directions. It is obvious that these lengths
correspond to average energies of interactions in horizontal and vertical
directions. Denote these by uh and uv , respectively. Of course we have
u=uv+uh , where u is the total internal energy. Furthermore

uh=J
�(;f )

�H
, uv=J$

�(;f )
�H$

(16)

Relations between uv , uh and }#k�N 2, *#l�N 2 are:

}=
1

2J
uv+

1
2

, *=
1

2J$
uh+

1
2

(17)
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Fig. 3. Anisotropic lattice 10_10. Logarithm of number of states as a function of polygon
lengths: horizontal k and vertical l. Remark. Only half of the range of k and l is taken because
of symmetry.

We see that the problem of calculation of ln gkl �N 2 as functions of } and
* is equivalent to expressing the entropy as a function of uv , uh . The techni-
calities are the following. From given values of (uv , uh) we calculate the
corresponding values of (x, y). It is not possible by some explicit formulas,
but from the inverse function theorem we conclude that there exists a
unique mapping x=x(uv , uh), y= y(uv , uh). From x, y calculated in this
manner, we calculate in turn the entropy.

Explicit formulas for all necessary quantities are as follows. The free
energy (ref. 7) is given by

&;f =
1

2? |
?

0
ln {2 _cosh 2H cosh 2H$+

1
k

- 1+k2&2k cos 2%&= d% (18)

where k=(sinh 2H sinh 2H$)&1. ``Vertical'' and ``horizontal'' contributions
to the internal energy are:(2)

&
uh

J$
=coth 2H$(2y+(2K�?) Z[2yK$, k$]) (19)

&
uv

J
=coth 2H(1&2y+(2K�?) Z[(1&2y) K$, k$]) (20)
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where these expressions are valid below the critical temperature, and above
the critical temperature we have

&
uh

J$
=coth 2H$(2y&(2K�?) Z[(1&2y) K$, k$]) (21)

&
uv

J
=coth 2H(1&2y&(2K�?) Z[2yK$, k$]) (22)

In the formulas for uv , uh the notation is: k=(sinh 2H sinh 2H$)&1 (T<Tc);
k$=- 1&k2; k#K(k) is a complete elliptic integral of first kind; K$=K(k$);
g$=gd 2H$, g=gd 2H (where gd is the gudermannian angle, defined as
gd u=2 arctg(tanh 1

2 u)), and y=F(k$, g$)�2K$ where F(k, ,) denotes the
elliptic integral of the first kind: F(k, ,)=�,

0 (1&k2 sin2 %)&1�2 d%. Z[u, k] is
the Jacobi elliptic function. For T>Tc one must take k=(sinh 2H sinh 2H$).

Other important thermodynamic functions (i.e., total internal energy u
and entropy s) can be calculated from the relations f =u&Ts, u=uv+uh .
The plot of the entropy as function of vertical and horizontal scaled
polygon lengths is presented on Fig. 4.

Fig. 4. Anisotropic lattice. Entropy s as a function of (scaled) polygon lengths: horizontal }
and vertical * in thermodynamic limit. Again, due to symmetry, only half of range of variables
}, * is taken.
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5. OUTLOOK

We have calculated the number of polygons for fixed total length as
well as the number of polygons for separately fixed horizontal and vertical
lengths. By use of the exact expression of the Ising model free energy on the
square lattice with periodic boundary conditions we have numerically
obtained the distribution functions (entropies) for system sizes up to
N�40 (for isotropic lattices) and N�10 (for anisotropic ones).

It is seen that for increasing N, the corresponding entropies sN

converge to the entropy calculated in the thermodynamic limit. It would be
interesting (although technically involved) to calculate the asymptotics of
the entropy for large N via correction terms in the saddle point approximation.

We believe that our results concerning the distribution of energies
provide useful checks for Monte Carlo calculations.

The two-dimensional Ising model is a unique nontrivial statistical-
mechanical model (with finite range interactions) for which it is possible to
calculate the partition function in closed form not only in TD limit, but
also for finite lattices. The corrections to finite size scaling, i.e., higher order
terms in asymptotic expansions for large N, are of great importance in
determining properties of large but finite systems. However, the structure of
such correction-to-scaling terms is clear only in the leading terms for which
renormalization-group results or exact solutions have been obtained. The
structure of next-to-leading FSS terms remains unclear even for the Ising
model. The main reason of this situation is the fact that FSS corrections
are difficult to determine both theoretically as well as numerically. The
sources of these difficulties have been discussed recently in ref. 8. By an
extension of the method presented here (a generalization of the exact
expression for the partition function to other thermodynamic quantities) it
should be possible to determine higher-order FSS corrections. The realiza-
tion of this programme is in progress.

ACKNOWLEDGMENTS

A substantial part of the calculations have been performed during the
stay of one of us (J.W.) at the Institut fu� r Theoretische Physik, Universita� t
zu Ko� ln. J.W. would like to express his gratitude towards DAAD for
financial support and for the ITP for kind hospitality. A.K. acknowledges
financial support by the Deutsche Forschungsgemeinschaft under grant
No. Kl 645�3-1 and support by the research program of the Sonderfor-
schungsbereich 341, Ko� ln-Aachen-Ju� lich.

1072 Wojtkiewicz and Klu� mper



REFERENCES

1. P. D. Beale, Phys. Rev. Lett. 76:78 (1996).
2. L. Onsager, Phys. Rev. 65:117 (1944).
3. B. Kaufman, Phys. Rev. 76:1232 (1949).
4. M. Kac and J. C. Ward, Phys. Rev. 88:1332 (1952).
5. V. S. Dotsenko, M. Picco, P. Windey, G. Harris, E. Martinec, E. Marinari, Nucl. Phys. B

448:577 (1995).
6. B. L. van der Waerden, Z. Physik 118:473 (1941).
7. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, 1982).
8. J. Salas, A. Sokal: cond-mat�9904038.

1073Distribution of Energies for 2D Ising Model


